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Abstract

The first step in investigation the dynamics of a continuous time system described by ordinary differential equations is to

integrate them to obtain trajectories. In this paper, we convert the group-preserving scheme (GPS) developed by Liu

[International Journal of Non-Linear Mechanics 36 (2001) 1047–1068] to a time step-size adaptive scheme,

x‘þ1 ¼ x‘ þ hfðx‘; t‘Þ, where x 2 Rn is the system variables we are concerned with, and fðx; tÞ 2 Rn is a time-varying

vector field. The scheme has the form similar to the Euler scheme, x‘þ1 ¼ x‘ þ Dtfðx‘; t‘Þ, but our step-size h is adaptive

automatically. Very interestingly, the ratio h=Dt, which we call the adaptive factor, can forecast the appearance of chaos if

the considered dynamical system becomes chaotical. The numerical examples of the Duffing equation, the Lorenz equation

and the Rossler equation, which may exhibit chaotic behaviors under certain parameters values, are used to demonstrate

these phenomena. Two other non-chaotic examples are included to compare the performance of the GPS and the adaptive

one.

r 2006 Published by Elsevier Ltd.
1. Introduction

There have a lot of examples to show that the standard discretization methods of differential equations
often produce difference equations that do not correspond to the dynamics of the original equations. For
examples, Chen and Solis [1] investigated the appearance of spurious solutions when some first-order ODEs
are discretized by using the Runge–Kutta methods, and showed that the resulting schemes may produce
unrelated bifurcation phenomena to the original equations. Undoubtedly, a major difficultly in the numerical
solutions is the existence of numerical instabilities. Mickens [2] has attributed these instabilities into the
following four mechanisms: (a) for the central difference scheme, the numerical instabilities are a consequence
of the order of the difference scheme being higher than the order of the differential equation; (b) for the
forward Euler scheme, the numerical instabilities arise when the step-size is larger than some fixed finite value;
ee front matter r 2006 Published by Elsevier Ltd.
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(c) for the implicit backward Euler scheme, the numerical instabilities occur when the step-size is larger than
some fixed finite value, such that all the fixed points of the difference scheme become stable; (d) for the higher-
order Runge–Kutta scheme, the numerical instabilities occur when the step-size is larger than some fixed finite
value, such that some spurious fixed points of the difference scheme appear. As a result, the step-size for the
scheme being used is usually controlled by the stability considerations and therefore, is very small. How to
develop an effective variable step-size numerical scheme for saving computational time and ensuring accuracy
is now a major study area in numerical methods.

In order to deal with those difficulties appeared in the conventional numerical methods, a group-preserving
scheme (GPS) that focuses to preserve the group properties of the considered system has been developed by
Liu [3] through embedding the general nonlinear dynamical system into an augmented dynamical system.
Thus, for the general dynamical system of ordinary differential equations it can be endowed a cone structure
on the Minkowski space, of which a proper orthochronous Lorentz group left acts. Mathematically speaking,
the general dynamical system with dimension n exhibits an internal symmetry group SOo (n, 1), and the so-
called GPS to preserve the group SOo (n, 1) in the numerical time stepping can be developed.

A deterministic system is said to be chaotic whenever its evolution sensitively depends on the initial
conditions. The necessary requirements for a deterministic system to be chaotic are that the system must be
nonlinear and be at least three dimensional [4]. This property implies that two trajectories emerging from two
different nearby initial conditions separate exponentially in the course of time. In order to realize a desirable
(chaotic, periodic, or stationary) behavior, controls of chaos referring to a process wherein a tiny perturbation
is applied to a chaotic system are arising and applying in many fields. An important article addressing the
control of chaos including of theory and applications [4] can be found. The fact that some dynamical model
systems showing the above necessary conditions possess such a critical dependence on the initial condition has
now been known. In fact, chaotic systems are common in nature and recently, remedies and applications to the
fields of vibration problems have been emerged [5–9].

In this paper, we will convert the GPS to a time step-size adaptive scheme. This scheme has the form similar
to the Euler scheme, but its step-size is adaptive automatically, which can forecast the appearance of chaotical
behavior of the considered dynamical system under certain values of the parameters.

2. Group-preserving scheme

The group-preserving scheme is such a scheme that can preserve the internal symmetry group of the
considered system. Although we do not know previously what kind symmetry group of the general nonlinear
dynamical systems have, yet Liu [3] has embedded them into the augmented dynamical systems, which concern
with not only the evolutions of the state variable itself but also with the evolution of its magnitude. That is, for
the general dynamical system of n ordinary differential equations:

_x ¼ fðx; tÞ; x 2 Rn; t 2 R, (1)

we can embed it into the following (n+1)-dimensional augmented dynamical system:

d

dt

x

jjxjj

" #
¼

0n�n
fðx;tÞ
jjxjj

fTðx;tÞ
jjxjj

0

2
4

3
5 ¼ x

jjxjj

" #
. (2)

Here we assure that x never goes to the zero point, which leads to ||x||40 and hence, the above system is well
defined. It is obvious that the first equation in Eq. (2) is the same as the original Eq. (1), but the addition of the
second equation gives us a Minkowskian structure with the augmented state variable X: ¼ (xT, ||x||)T

satisfying the cone condition

XTgX ¼ 0, (3)

where

g ¼
In 0n�1

01�n �1

" #
(4)
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is a Minkowski metric. In is the identity matrix of order n, and the superscript T stands for the transpose. In
terms of (x, ||x||), Eq. (3) becomes

XTgX ¼ x � x� jjxjj2 ¼ jjxjj2 � jjxjj2 ¼ 0, (5)

where the dot between two n-dimensional vectors denotes their Euclidean inner product. The cone condition is
thus the most natural constraint that we can impose on the dynamical system described in Eq. (2).

Consequently, we have an (n+1)-dimensional augmented system:

_X ¼ AX (6)

with a constraint of Eq. (3), where

A :¼
0n�n

fðx;tÞ
jjxjj

fT ðx;tÞ
jjxjj

0

2
4

3
5, (7)

satisfying

ATgþ gA ¼ 0 (8)

is a Lie algebra so(n, 1) of the proper orthochronous Lorentz group SOo(n, 1). This fact prompts us to devise
the so-called group-preserving schemes, whose discretized maps G exactly preserve the following properties:

GTgG ¼ g, (9)

det G ¼ 1, (10)

G0
040, (11)

where G0
0 is the 00th component of G. Such G is a proper orthochronous Lorentz group denoted by SOo(n, 1).

The term orthochronous used in the special relativity theory is referred to the preservation of the time
orientation. However, it should be understood here as the preservation of the sign ||x||.

Remarkably, the original n-dimensional dynamical system of Eq. (1) in En can be embedded naturally into
an augmented (n+1)-dimensional dynamical system of Eq. (6) in Mnþ1. Although the dimension of the new
system is raised by one, it has been shown that the new system has the advantage of devising group-preserving
numerical scheme as follows [3]:

X‘þ1 ¼ Gð‘ÞX‘, (12)

where X‘ denotes the numerical value of X at the discrete time t‘, and Gð‘Þ 2 SOoðn; 1Þ is the group value at
time t‘.

The group generated from A 2 SOoðn; 1Þ is known as a proper orthochronous Lorentz group, of which the
Cayley transform

CayðtAÞ ¼ ðI� tAÞ�1ðIþ tAÞ (13)

is a map from A to an element of SOo (n,1) for t 2 R and tojjxjj=jjfjj. Substituting Eq. (7) for Að‘Þ, which
denotes the values of A at the discrete time t‘, into the above equation yields

Cay½tAð‘Þ� ¼
In þ

2t2f‘fT‘
jjx‘ jj

2�t2jjf‘ jj2
2tjjx‘ jjf‘

jjx‘ jj
2�t2jjf‘ jj2

2tjjx‘ jjfT‘
jjx‘ jj

2�t2jjf‘ jj2
jjx‘ jj

2þt2jjf‘ jj2

jjx‘ jj
2�t2jjf‘ jj2

2
64

3
75. (14)

Inserting the above Cay½tAð‘Þ� for Gð‘Þ into Eq. (12) and ranking its first row, we obtain

x‘þ1 ¼ x‘ þ hwð‘Þf‘, (15)

where

wð‘Þ :¼
jjx‘jj

2 þ tf‘ � x‘
jjx‘jj

2 � t2jjf‘jj2
, (16)
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is called a weighting factor. In the above, x‘ denotes the numerical value of x at the discrete time t‘, t is one
half of the time increment, i.e., t :¼ h=2, and more precisely, f‘ is fðx‘; t‘Þ.

In order to meet the property of Eq. (11), we require the step-size of the scheme of Eq. (15) being
constrained by ho2jjx‘jj=jjf‘jj. Under this condition, we have

ho
2jjx‘jj

jjf‘jj
3G0

040) wð‘Þ40. (17)
3. A new time step-size adaptive numerical scheme

It deserves to note that the scheme of Eq. (15) is very similar to the Euler scheme,

x‘þ1 ¼ x‘ þ Dtf‘, (18)

where Dt is a fixed time step-size. This motivates us to derive a new time step-size adaptive numerical scheme

x‘þ1 ¼ x‘ þ hf‘ (19)

where h is varying step-by-step and is solved from the following equation:

jjx‘jj
2 þ tf‘ � x‘

jjx‘jj
2 � t2jjf‘jj2

h ¼ Dt, (20)

which is obtained by letting the coefficient in Eq. (15) equal to Dt.
Upon noting that t ¼ h=2, from Eq. (20) we obtain

½Dtjjf‘jj
2 þ 2f‘ � x‘�h

2
þ 4jjx‘jj

2h� 4Dtjjx‘jj
2 ¼ 0. (21)

The discriminant of Eq. (21) is non-negative as shown in the following:

16jjx‘jj
4 þ 16Dtjjx‘jj

2 Dtjjf‘jj
2 þ 2f‘ � x‘

� �
¼ 16jjx‘jj

2jjx‘ þ Dtf‘jj
2
X0. ð22Þ

Depending on the sign of the coefficient before h2 in Eq. (21), there have three possible conditions:

Dt f‘k k
2 þ 2f‘ � x‘

� �
40; one positive root and one negative root; (23)

Dtjjf‘jj
2 þ 2f‘ � x‘

� �
¼ 0; double root with h ¼ Dt, (24)

Dtjjf‘jj
2 þ 2f‘ � x‘

� �
o0; two positive roots. (25)

In summary, we only consider the positive root, which is given by

hð‘Þ ¼
2jjx‘jjðjjx‘ þ Dtf‘jj � jjx‘jjÞ

Dtjjf‘jj
2 þ 2f‘ � x‘

. (26)

In the above, we have seen that only in the limiting case with that in Eq. (24), h ¼ Dt; therefore, it is very
interesting for us to know that when h4Dt and when hoDt?

In the coefficient before h2 in Eq. (21), the sign is dominated by the quantity, f � x, because Dtjjfjj2 is a small
number. Therefore, we can use f � x as a criterion to choose h as shown in Fig. 1. We give a geometric
description as follows. When the quantity f � x40, the vector f is moving in the direction outwards, and the
norm jjxjj will increase relatively. In the contrast, when f � xo0, the vector f is moving in the direction
inwards, and the norm jjxjj will decrease relatively.

In the Euler scheme, no matter what condition is, its step-size is always Dt, which however as mentioned in
Section 1, would likely lead to numerical instability. In our new method, f � x is adopted as a criterion to adapt
h to avoid numerical instability; however, h and Dt must satisfy Eq. (21) simultaneously. In this regard, the
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Fig. 1. The changing relation of the vector-value function f and the Euclidean normjjxjj in a domain.
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new method has two kinds of conditions as follows:

hoDt; when f � x40,

h4Dt; when f � xo0.

The above two statements are rather significant in that when the vector field tends to increase the magnitude
jjxjj, the new method will adopt a smaller time step-size to avoid numerical instability, and conversely, when
the vector field tends to decrease the magnitude jjxjj, the new method will adopt a larger time step-size to save
computation time.

Substituting Eq. (26) for hð‘Þ into Eq. (19), we obtain a time step-size adaptive numerical scheme as follows:

x‘þ1 ¼ x‘ þ
2jjx‘jjðjjx‘ þ Dtf‘jj � jjx‘jjÞ

Dtjjf‘jj
2 þ 2f‘ � x‘

f l . (27)

Specially, we call the ratio Zð‘Þ :¼ hð‘Þ=Dt an adaptive factor of the scheme in Eq. (19). In numerical
implementation we do not need to adjust the step size, because our hð‘Þ is adapted automatically according to
the values of x‘ and f‘ at the previous step.

4. Numerical examples
Example 1 (Duffing equation). To test the capability of the numerical scheme developed in Section 3, let us
consider the following Duffing equation with forcing term:

€xþ g _xþ axþ bx3 ¼ f 0 cos ot, (28)

which describes the motion of a nonlinear oscillator in the presence of a nonlinear restoring force equal to
ax+bx3, a damping g and a periodic driving term with amplitude f0. Some of the earliest observations of
chaotic attractors were made on this equation, which exhibits a rich variety of chaotic phenomena in various
parameters regimes. We apply the GPS and the time step-size adaptive scheme shown in Section 3 to solve the
Duffing equation, where the parameters a ¼ �1, b ¼ 1, g ¼ 1, and o ¼ 1:2 with the amplitudes of the imposed
forces f 0 given as 0.2, 0.27, 0.2861, 0.2867 and 0.32, respectively. Numerical results of the time step-size
adaptive scheme are shown in Fig. 2, where the trajectories of the Duffing equation are plotted in
Figs. 2(a),(d),(g),(j) and (m) with respect to one-period, two-period, four-period, eight-period and chaos
response, respectively. It should be noted that the transient part of the trajectories which starting from the
initial point x1 ¼ 2 and x2 ¼ 0 are not plotted in these figures. At the same time we plot the time histories and
power spectrum of the adaptive factor Z in Figs. 2(b),(e),(h),(k) and (n) and Figs. 2(c),(f),(i),(l) and (o),
respectively. Similarly, numerical results of the GPS are shown in Fig. 3 including the trajectories of the
Duffing equation shown in Figs. 3(a),(d),(g),(j) and (m), and the time histories and power spectrum of the
weighting factor w shown in Figs. 3(b),(e),(h),(k) and (n) and Figs. 3(c),(f),(i),(l) and (o), respectively. It should
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Fig. 2. Results obtained for Duffing equation using time step-size adaptive numerical scheme in Section 3. The sequences of period-

doubling to chaos are shown in the left column; while time histories and power spectrum of the adaptive factor Z are shown in the middle

and right column, respectively.
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Fig. 3. Results obtained for Duffing equation using the GPS in Section 2. The sequences of period-doubling to chaos are shown in the left

column; while time histories and power spectrum of the weighting factor w are shown in the middle and right column, respectively.
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be noted that although the proposed time step-size adaptive scheme has no dominant effect on computing time
as compared with the GPS, yet the proposed adaptive scheme can show more detailed dynamic behaviors in
the chaotic state without loss of its computational accuracy as shown in Figs. 2(m) and 3(m).

Example 2 (Lorenz system [10]). A seminal example of chaotic flow that arises from the hydrodynamic
equations for describing the Rayleigh–Bénard convections is the Lorenz system

_x ¼ �sxþ sy,

_y ¼ Rx� y� xz,

_z ¼ xy� Bz. ð29Þ

The numbers s, B and R are the system’s physical parameters, which Lorenz fixed them at s ¼ 10, B ¼ 8=3
and R ¼ 26. Again two types of numerical schemes including the GPS and the time step-size adaptive one are
adopted to solve the Lorenz system. Numerical results of the time step-size adaptive scheme are shown in
Fig. 4, in which the trajectories of Lorenz system are plotted in Figs. 4(a) and (b). The transient part of the
Fig. 4. Results obtained for the Lorenz system using the time step-size adaptive numerical scheme. Trajectories of the Rössler system are

shown in (a) and (b); while time histories and power spectrum of the adaptive factor Z are shown in (c) and (d).
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trajectories which starting from the initial point x ¼ 1:0, y ¼ 1:0 and z ¼ 0 are not plotted in the figures.
However, we plot the time histories and power spectrum of the adaptive factor Z in Figs. 4(c) and (d),
respectively. Similarly, numerical results of the GPS are shown in Fig. 5, in which the trajectories of Lorenz
system are shown in Figs. 5(a) and (b), and the time histories and power spectrum of the weighting factor w are
shown in Figs. 5(c) and (d), respectively.

Example 3 (Rössler system). In 1976, Rossler [11] found a particularly simple system, which is probably the
most elementary geometric construction of chaos in continuous systems, and be designed solely with the
purpose of creating a model for a strange attractor using only the simplest chaos generating mechanism,
stretch-and-fold. The Rössler system we consider is the following equations system:

_x ¼ �ðyþ zÞ,

_y ¼ xþ ay,

_z ¼ bþ xz� cz, ð30Þ
Fig. 5. Results obtained for the Lorenz system using the GPS numerical scheme. Trajectories of the Rössler system are shown in (a) and

(b); while time histories and power spectrum of the weighting factor w are shown in (c) and (d).
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where a, b and c are adjustable constants. Again two types of numerical schemes including the GPS and the
time step-size adaptive one are adopted to solve the Rössler system. The parameters of the Rössler system are
fixed at a ¼ b ¼ 1=5, and c ¼ 5:7. Numerical results of the time step-size adaptive scheme are shown in Fig. 6,
in which the trajectories of Rössler system are shown in Figs. 6(a) and (b). The transient part of the trajectories
which starting from the initial point x ¼ �1:0, y ¼ 0 and z ¼ 0 is not plotted in the figures; however, we plot
the time histories and power spectrum of the adaptive factor Z in Figs. 6(c) and (d), respectively. Similarly,
numerical results of the GPS are shown in Fig. 7, in which the trajectories of the Rössler system are shown in
Figs. 7(a) and (b), and the time histories and power spectrum of the weighting factor w are shown in Figs. 7(c)
and (d), respectively.

Example 4. In this example [12], we will solve the response problem of the nonlinear periodic system:

_x1 ¼ x2,

_x2 ¼ �2:25x1 � ðx1 � 1:5 sin tÞ3 þ 2 sin t,

x1ð0Þ ¼ 0:0; x2ð0Þ ¼ 1:59929. ð31Þ
Fig. 6. Results obtained for the Rössler system using the time stepsize adaptive numerical scheme. Trajectories of the Rössler system are

shown in (a) and (b); while time histories and power spectrum of the adaptive factor Z are shown in (c) and (d).
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Fig. 7. Results obtained for the Rössler system using the GPS numerical scheme. Trajectories of the Rössler system are shown in (a) and

(b); while time histories and power spectrum of the weighting factor w are shown in (c) and (d).
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Their exact solutions are

x1ðtÞ ¼ 1:59941 sin t� 0:00004 sin 3t,

x2ðtÞ ¼ 1:59941 cos t� 0:00012 cos 3t. ð32Þ

The GPS and the time step-size adaptive scheme are adopted to solve the nonlinear periodic system.
Comparisons of the numerical results are shown in Fig. 8, in which the errors of numerical solutions with
respect to the exact solution for x1 and x2 are shown in Figs. 8(a) and (b), respectively, and the trajectories of
nonlinear periodic system are plotted in Fig. 8(c). Since the exact solution is available in this example, it is
shown that the proposed time step-size adaptive scheme has the same accuracy as the GPS and both schemes
are reliably demonstrated.

Example 5. Here, we consider the following initial-value problem for the ordinary differential equations [12]:

€x ¼ �ð _xÞ2 � xþ ln t; xð1Þ ¼ 0; _xð1Þ ¼ 1. (33)
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Fig. 8. Results obtained for the nonlinear periodic system using the GPS and the time step-size adaptive numerical scheme. Errors of

numerical solutions with respect to the exact solution are shown in (a) and (b), and trajectories of nonlinear periodic system are plotted in

(c).
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Its exact solution is

x ¼ ln t. (34)

The above second-order ordinary differential equation can be transformed into the following first-order
differential equation:

_x1 ¼ x2; x1ð1Þ ¼ 0;

_x2 ¼ �x1 � x2
2 � xþ ln t; x2ð1Þ ¼ 1:

(35)

Then, we use the GPS and the time step-size adaptive scheme, respectively, to solve the above equa-
tions. Fig. 9(a) shows the errors of numerical solutions with respect to the exact solution for the GPS and
the time step-size adaptive schemes, respectively. Fig. 9(b) shows time trajectories of the two schemes with
the exact solution. Sound matching results in these two figures again validate the accuracy of the proposed
scheme.
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Fig. 9. Results obtained for the initial-value problem of ordinary differential equations using the GPS and the time step-size adaptive

numerical scheme. Errors of numerical solutions with the exact solution for the GPS and the time step-size are shown in (a) and time

trajectories of the two schemes with the exact solution are shown in (b).
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5. Concluding remarks

In this paper, we have proposed a time step-size automatically adaptive numerical scheme to calculate the
responses of nonlinear dynamical systems. Our method is drastically different from the conventional variable
step-size schemes, the step-sizes of which are usually controlled by meeting the specified accuracy, and their
numerical implementations are rather complicated. Numerical examples show that the time histories of the
adaptive factor can reflect the information of the chaotical motion. When the system is in the non-chaotic
state, the adaptive factor has regular time history; however, when the system is in the chaotic state, the
adaptive factor has irregular time history. Besides, the proposed adaptive scheme can show more detailed
dynamic behaviors without loss of the accuracy in the chaotic state of the nonlinear dynamic system as
compared with the GPS.
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